106 research outputs found

    Viscosity measurement in thin lubricant films using shear ultrasonic reflection

    Get PDF
    When a shear ultrasonic wave is incident on a solid and liquid boundary, the proportion that is reflected depends on the liquid viscosity. This is the basis for some instruments for on-line measurement of bulk liquid viscosity. In machine elements, the lubricant is usually present in a thin layer between two rubbing solid surfaces. The thin film has a different response to an ultrasonic shear wave than liquid in bulk. In this work, this response is investigated with the aim of measuring viscosity in situ in a lubricating film. The proportion of the wave reflected at a thin layer depends on the layer stiffness. A shear wave is reflected by the shear stiffness of the thin layer. For a thin viscous liquid layer, the stiffness is a complex quantity dependent on the viscosity, wave frequency, and film thickness. This stiffness is incorporated into a quasi-static spring model of ultrasonic reflection. In this way, the viscosity can be determined from shear-wave reflection if the oil-film thickness is known. The approach has been experimentally evaluated on some static oil film between Perspex plates. Predictions of the spring model gave good measurement up to layer thicknesses of around 15 μm. For thicker layers, the shear stiffness reduces to such an extent that almost all the wave is reflected and the difference associated with the layer response is hard to distinguish from background noise

    Integrating Dynamics and Wear Modelling to Predict Railway Wheel Profile Evolution

    Get PDF
    The aim of the work described was to predict wheel profile evolution by integrating multi-body dynamics simulations of a wheelset with a wear model. The wear modelling approach is based on a wear index commonly used in rail wear predictions. This assumes wear is proportional to Tγ, where T is tractive force and γ is slip at the wheel/rail interface. Twin disc testing of rail and wheel materials was carried out to generate wear coefficients for use in the model. The modelling code is interfaced with ADAMS/Rail, which produces multi-body dynamics simulations of a railway wheelset and contact conditions at the wheel/rail interface. Simplified theory of rolling contact is used to discretise the contact patches produced by ADAMS/Rail and calculate traction and slip within each. The wear model combines the simplified theory of rolling contact, ADAMS/Rail output and the wear coefficients to predict the wear and hence the change of wheel profile for given track layouts

    Measuring wheel/rail contact stresses using ultrasound

    Get PDF
    The investigation of contact area and pressure distribution in a wheel/rail contact is essential information required in fatigue and wear calculations to determine design life, regrinding requirements, and maintenance schedules. The aim of this work was to use ultrasound to non-destructively determine wheel/rail contact pressures. Three different contacts were investigated those resulting from; un-used, sand damaged, and worn wheel/rail specimens. A wheel/rail interface behaves like a spring. If the pressure is high the interface is very stiff, with few air gaps, and allows the transmission of an ultrasonic sound wave. If the pressure is low, interfacial stiffness is low and almost all the ultrasound is reflected. A spring model was used to determine maps of contact stiffness from wheel/rail ultrasonic reflection data. Pressure was then determined using a calibration experiment. Separate calibrations were performed for each of the three sets of wheel/rail specimens investigated. Measured contact pressure distributions are compared to those determined using analytical and computer bases numerical techniques

    Experimental characterization of wheel-rail contact patch evolution

    Get PDF
    The contact area and pressure distribution in a wheel/rail contact is essential information required in any fatigue or wear calculations to determine design life, re-grinding, and maintenance schedules. As wheel or rail wear or surface damage takes place the contact patch size and shape will change. This leads to a redistribution of the contact stresses. The aim of this work was to use ultrasound to nondestructively quantify the stress distribution in new, worn, and damaged wheel-rail contacts. The response of a wheel/rail interface to an ultrasonic wave can be modeled as a spring. If the contact pressure is high the interface is very stiff, with few air gaps, and allows the transmission of an ultrasonic sound wave. If the pressure is low, interfacial stiffness is lower and almost all the ultrasound is reflected. A quasistatic spring model was used to determine maps of contact stiffness from wheel/rail ultrasonic reflection data. Pressure was then determined using a parallel calibration experiment. Three different contacts were investigated; those resulting from unused, worn, and sand damaged wheel and rail specimens. Measured contact pressure distributions are compared to those determined using elastic analytical and numerical elastic-plastic solutions. Unused as-machined contact surfaces had similar contact areas to predicted elastic Hertzian solutions. However, within the contact patch, the numerical models better reproduced the stress distribution, as they incorporated real surface roughness effects. The worn surfaces were smoother and more conformal, resulting in a larger contact patch and lower contact stress. Sand damaged surfaces were extremely rough and resulted in highly fragmented contact regions and high local contact stress. Copyright © 2006 by ASME

    The phase shift of an ultrasonic pulse at an oil layer and determination of film thickness

    Get PDF
    An ultrasonic pulse incident on a lubricating oil film in a machine element will be partially reflected and partially transmitted. The proportion of the wave amplitude reflected, termed the reflection coefficient, depends on the film thickness and the acoustic properties of the oil. When the appropriate ultrasonic frequency is used, the magnitude of the reflection coefficient can be used to determine the oil film thickness. However, the reflected wave has both a real component and an imaginary component, and both the amplitude and the phase are functions of the film thickness. The phase of the reflected wave will be shifted from that of the incident wave when it is reflected. In the present study, this phase shift is explored as the film changes and is evaluated as an alternative means to measure oil film thickness. A quas i-static theoretical model of the reflection response from an oil film has been, developed. This model relates the phase shift to the wave frequency and the film properties. Measurements of reflection coefficient from a static model oil film and also from a rotating journal bearing have been recorded. These have been used to determine the oil film thickness using both amplitude and phase shift methods. In both cases, the results agree closely with independent assessments of the oil film thickness. The model of ultrasonic reflection is further extended to incorporate mass and damping terms. Experiments show that both the mass and the internal damping of the oil films tested in this work have a negligible effect on ultrasonic reflection. A potentially v ery useful application for the simultaneous measurement of reflection coefficient amplitude and phase is that the data can be used to negate the need for a reference. The theoretical relationship between phase and amplitude is fitted to the data. An extrapolation is performed to determine the values of amplitude and phase for an infinitely thick layer. This is equivalent to the reference signal determined by measuring the reflection coefficient directly, but importantly does not require the materials to be separated. This provides a simple and effective means of continuously calibrating the film measurement approach

    A new CAE procedure for railway wheel tribological design

    Get PDF
    New demands are being imposed on railway wheel wear and reliability to increase the time between wheel reprofiling, improve safety and reduce total wheelset lifecycle costs. In parallel with these requirements, changes in railway vehicle missions are also occurring. These have led to the need to operate rolling stock on track with low as well as high radius curves; increase speeds and axle loads; and contend with a decrease in track quality due to a reduction in maintenance. These changes are leading to an increase in the severity of the wheel/rail contact conditions, which may increase the likelihood of wear or damage occurring. The aim of this work was to develop a new CAE design methodology to deal with these demands. The model should integrate advanced numerical tools for modelling of railway vehicle dynamics and suitable models to predict wheelset durability under typical operating conditions. This will help in designing wheels for minimum wheel and rail wear; optimising railway vehicle suspensions and wheel profiles; maintenance scheduling and the evaluation of new wheel materials. This work was carried out as part of the project HIPERWheel, funded by the European Community within the Vth Framework Programme

    The application of ultrasonic NDT techniques in tribology

    Get PDF
    The use of ultrasonic reflection is emerging as a technique for studying tribological contacts. Ultrasonic waves can be transmitted non-destructively through machine components and their behaviour at an interface describes the characteristics of that contact. This paper is a review of the current state of understanding of the mechanisms of ultrasonic reflection at interfaces, and how this has been used to investigate the processes of dry rough surface contact and lubricated contact. The review extends to cover how ultrasound has been used to study the tribological function of certain engineering machine elements

    Transitions in rolling-sliding wheel/rail contact condition during running-in

    Get PDF
    The risk of wheel-climb derailment increases if the traction coefficient in the wheel/rail contact is too high. This has been observed to happen more frequently just after wheel machining. This work investigates how the traction coefficient rises with evolution of the wheel/rail interface during the running-in. Experiments were performed using a full-scale wheel/rail contact rig and an ultrasonic array transducer mounted in the rail. Results were used to determine the stiffness of the contact interface. Contact stiffness appeared to be positively correlated with the traction coefficient. Owing to the conforming of the interface, contact stiffness increases before the traction coefficient rises. The work will allow recommendation of wheel machining to be made to help reduce the problem of wheel-climb derailment

    The measurement of lubricant-film thickness using ultrasound

    Get PDF
    Ultrasound is reflected from a liquid layer between two solid bodies. This reflection depends on the ultrasonic frequency, the acoustic properties of the liquid and solid, and the layer thickness. If the wavelength is much greater than the liquid-layer thickness, then the response is governed by the stiffness of the layer. If the wavelength and layer thickness are similar, then the interaction of ultrasound with the layer is controlled by its resonant behaviour. This stiffness governed response and resonant response can be used to determine the thickness of the liquid layer, if the other parameters are known. In this paper, ultrasound has been developed as a method to determine the thickness of lubricating films in bearing systems. An ultrasonic transducer is positioned on the outside of a bearing shell such that the wave is focused on the lubricant-film layer. The transducer is used to both emit and receive wide-band ultrasonic pulses. For a particular lubricant film, the reflected pulse is processed to give a reflection-coefficient spectrum. The lubricant-film thickness is then obtained from either the layer stiffness or the resonant frequency. The method has been validated using fluid wedges at ambient pressure between flat and curved surfaces. Experiments on the elastohydrodynamic film formed between a sliding ball and a flat surface were performed. Film-thickness values in the range 50-500 nm were recorded, which agreed well with theoretical film-formation predictions. Similar measurements have been made on the oil film between the balls and outer raceway of a deep-groove ball bearing
    corecore